How University of Lincoln Used V7 to Achieve 95% AI Model Accuracy

How University of Lincoln Used V7 to Achieve 95% AI Model Accuracy

Yield of strawberries
University of Lincoln logo

Forecasting strawberry yields using computer vision

Industry

Agriculture

Use Case

Yield Estimation

Company size

2,000+ employees

Headquarters

Riseholme Campus

Data labelling
Discover our solutions

About

LIAT’s mission is the development of technologies that add value or solve challenges across the food chain. In this project, they focused on the horticulture sector—starting with a small strawberry farm located near Riseholme Campus. The team uses vehicle-mounted cameras to identify and count individual fruits, estimate their weight and maturity state. This data is used to develop AI algorithms for strawberry yield forecasting.

Model accuracy

95%

Historically, the yield prediction software would be based on season, climate & environmental data. With the technology enabled by the V7 labeling solution, we can now include more specific crop responses and bolster our yield prediction results like never before

Photo of man in field

Raymond Tunstill

PhD Researcher, CTO of FruitCast

Yield prediction time

5 weeks

Favorite Feature

Data versioning

Model accuracy

95%

Historically, the yield prediction software would be based on season, climate & environmental data. With the technology enabled by the V7 labeling solution, we can now include more specific crop responses and bolster our yield prediction results like never before

Photo of man in field

Raymond Tunstill

PhD Researcher, CTO of FruitCast

Yield prediction time

5 weeks

Favorite Feature

Data versioning

Model accuracy

95%

Historically, the yield prediction software would be based on season, climate & environmental data. With the technology enabled by the V7 labeling solution, we can now include more specific crop responses and bolster our yield prediction results like never before

Photo of man in field

Raymond Tunstill

PhD Researcher, CTO of FruitCast

Yield prediction time

5 weeks

Favorite Feature

Data versioning

The challenge

Predicting the timing and yield of strawberries is critical but extremely difficult to do accurately. More than 40% of horticulture production costs are spent on picking labor, and much of the rest belongs to incorrect yield predictions. LIAT's team is using computer vision and robotics to create a system to predict strawberries' readiness and decrease the uncertainty of those forecasts by monitoring the crop responses in real-time.

The solution

LIAT collects image and video data from hand, vehicle or robot-mounted cameras, and uses V7 to label, identify, and track every strawberry in a greenhouse through semi-automated video annotation. They team leverages annotated data to train ML models and build robust, AI-powered yield forecasting systems able to predict yield six weeks ahead of existing systems.

The results

Thanks to the successful implementation of their computer vision models, LIAT's team has improved yield prediction accuracy and prediction time from 3 to 5 weeks. This means higher profit for the farmers and reduced supply chain friction and crop waste.

Apart from that, using V7's auto-annotation tool, the team managed to improve the model's accuracy going from 85% to 95% and achieving industry-leading performance tested on on real agricultural data.

Training data needs

LIAT's team is working with large datasets of strawberries (and other soft berries) captured using a vehicle or robot-mounted cameras. Data is annotated using V7's labeling tools such as bounding boxes, polygons, and directional vectors.

Labeled images are then used to train AI models that have already proven to achieve state-of-art performance on real agricultural data.

LIAT's team has decided to outsource their data annotation to V7's labeling partners to speed up the process and focus on the most critical aspects of their project.

Testimonial

We needed a tool that could do annotating and data versioning because we distribute our tools to farms, and we need to make sure that they have the same version of data for the same models. V7 met our needs.

We needed a tool that could do annotating and data versioning because we distribute our tools to farms, and we need to make sure that they have the same version of data for the same models. V7 met our needs.

Photo of man in field

Raymond Tunstill

PhD Researcher, CTO of FruitCast

Why V7?

The LIAT's team found V7 when looking for an alternative to Labelbox.

After giving it a try, they were pleasantly surprised to see the model accuracy going from 85% to 95% when labeling data on V7.

The team has also come to appreciate V7's advanced dataset management features, data versioning capabilities, and UX-friendly design that makes the whole process easier and more efficient.